

The transition from understanding the operation of a simple adder, built
during a sixth-form science session, to understanding how a full sized digital
computer can through-put vast amounts of scientific or business information, is a
difficult one. Even if a school possesses a computer a student, who has been taught
the essentials of programming and can operate the machine, may find it difficult to
understand, from an electronic point of view, how the computer handles the
numbers he feeds into it. The problem arises in the difference in scale between
laboratory practical work and the complexity of a modern computer.

The Wireless World digital computer was designed as a stepping stone between
these two extremes to demonstrate how electronic circuits can manipulate and
store numbers and to give an idea of how computer systems are organized.

An analysis of the correspondence arising from the series of articles describing
the computer (published in the August to December 1967 issues of Wireless World),
rather gratifyingly did not show any set pattern, implying that no two groups of
constructors encountered the same problems. However, a number of readers
complained at the apparent " maximization " of the design. Many readers will
know that a particular Boolean expression can be formed with a large number of
different combinations of logic elements and that one of these combinations uses
the least number of elements; this is known as the minimal form.

Minimization is carried out using a mixture of experience and Boolean manipula-
tion. Once a circuit has been minimized the way in which it operates usually
becomes obscured. The Wireless World computer has been deliberately kept in a
" maximal " form so that its operation can be easily visualized and understood.

Construction of the computer has been undertaken by a number of schools who
have found that the project has encouraged class discussions on the problems
associated with constructing the machine—and the design of this and other
computers—resulting in a clearer understanding of what digital computing is all
about.

WIRELESS
WORLD
DIGITAL
COMPUTER

—Outline description: basic theory: circuit elements

Low-cost desk-top binary machine for small-scale
calculations and for use in schools as a teaching
aid, designed by B. Crank of " Wirless World"
staff. Numbers are fed in manually and results of
calculations are read from indicator lamps. In-
structions, entered in binary coded form by a set
of switches, are interpreted and carried out auto-
matically by the machine.

THE Wireless World Digital Computer has been
designed as a low cost system capable of demonstrat-
ing basic computer methods and various operations

in the binary number system. It will add, subtract, multiply
and divide eight-bit binary numbers, which are entered
manually by means of press switches. It will also com-
plement a binary number, and this feature makes possible
arithmetic operations with mixed positive and negative
numbers and subtraction using the Is and 2s complement
methods. The machine can be programmed to convert
natural binary numbers into natural binary coded
decimal form, making the job of interpreting results
easier. The largest number that can be accommodated
by the computer is the maximum obtainable with eight
binary digits, which is 255.

Results of calculations and the states of all major
circuits are indicated on the front panel by small neon
lamps. This means that each computer operation can be
analysed in detail and fault diagnosis is made easier.
Instructions to the computer to perform required opera-
tions are entered, in numerical code form, by means of a
set of eight switches, and the machine interprets the code
and carries out the instructions automatically.

A choice of three operating speeds is provided. These
are: "one bit," in which the start button is used to
initiate separately each operation at each successive binary
position; " slow," in which pressing the start button
causes a complete arithmetical operation (e.g. adding two
8-digit numbers) to be performed at the rate of about
2 binary positions per second; and " normal " which is
similar in principle to " slow " but at the higher speed of
2,500 positions per second. In its present form the
computer will carry out one instruction—a complete
arithmetical operation—at a time. With the addition of
a few extra parts a whole sequence of instructions could

be carried out automatically, enabling basic programming
to be taught.

A simplified block schematic diagram of the computer
is shown in Fig. 1. Numerical data are fed straight into
the arithmetic unit by the data input unit and are operated
on by the computer in a manner determined by the order
register, at one of three speeds (mentioned above)
selected by the demonstration switching. The order
register is the means by which binary coded instructions
to the computer to perform a particular operation are fed
in and held. The order decoder translates the instruction
presented to it by the order register into a form that the
computer can " understand," and causes it to be carried
out by routing pulses, generated in the control unit, to
the correct sections of the computer. The exact number
of pulses generated by the control unit will depend on
what the decoder " tells " it to do and on the internal
condition of the arithmetic unit. Data can be transferred
from the arithmetic unit to the store for later use or from
the store to the arithmetic unit. The condition of all
circuits in the arithmetic unit and store are continuously
monitored on the front panel by the readout section so
that if desired any particular operation can be analysed
in detail.

The computer operates in the " serial " mode, which
means that the binary information being transferred along
the routes shown in Fig. 1 is represented by time
sequences of electrical states. Thus when a number is
being handled the digits in the successive binary posit-
ions are dealt with one after the other, starting with the
least significant digit and working upwards.

Fig. I. Simplified schematic showing principal units of the computer.

WIRELESS WORLD, AUGUST 1967

An important factor in any project is cost and everything
possible has been done to keep this within reasonable
bounds. The prototype cost something in the region of
£50-60, not including the cabinet. The transistors used
are, for the most part, reject germanium types available
for under Is each, the remainder being 60 V silicon types
that can be bought for about 2s each. An attempt has
been made to use resistors of the same value wherever
possible so that price reductions can be obtained by
quantity buying (say 2d each). The large quantity of
diodes used cost about 4|d each. The main difficulty is
in obtaining cheap capacitors, as prices range from about
9d to Is per item. However, if a systematic approach is
made to this problem much more favourable prices can
be obtained. The method adopted in the prototype was
to ask various retailers for quotations for the quantities
involved, in this manner a price of 4d per capacitor was
achieved.

Before construction of the computer is contemplated
it is essential that the intending builder be thoroughly
conversant with the theory involved (see " reminder "

sections following). Accuracy in construction is equally
important, for while trouble-shooting on the correctly
built computer is not too difficult, locating faults when
wiring errors are involved can be very trying.

Stored-programme facility.—Development work is
being done on a sub-routine store for the computer.
Early results are encouraging and should the store prove
to be reliable it will be described in detail later. Basically
it provides a further 64 words of storage (512 bits) that
can hold either control words or data. Each word is
stored by means of wired-in diodes or by diode " pegs "
inserted into a matrix programming board. As the com-
puter completes each operation the next instruction is
automatically fed to the computer from the sub-routine
store and is executed and this process continues until
a " stop " instruction is received by the computer. In
this way complete sequences of up to 64 separate instruc-
tions can be carried out automatically and basic program-
ming can be taught and demonstrated.

Continued on page 5

REMINDER ON BINARY ARITHMETIC

Binary notation.—In the binary system, only two characters
are required for counting, and we shall use the conventional
0 and 1. As in the decimal system the digits have positional
as well as numerical value as shown in the table (right).

The values of digits in successive positions from right to
left are increasing powers of two, 2°, 21, 22, 2:! (or 1, 2, 4, 8).
Each binary digit is termed a " bit " and a complete binary
number a " word." The weights of the digits in the eight-bit
word used in our computer are therefore 2°, 21, 22,23, 24, 25, 2°,
27 (or 1, 2, 4, 8, 16, 32, 64, 128).

To convert a binary number to a decimal number one can
add the weights for each column in which a 1 appears. Con-
sider the word 0110 (which from the table can be seen to equal
decimal 6). The decimal number is obtained as follows:—
0110 = (0 x 8) + (1 x 4) + (1 x 2) + (0 x 1) - 0 + 4-f 2-4 0
= 6.
A decimal number can be converted into a binary word by
successive division by the weights to give successive quotients
of Is and Os as follows:

Convert decimal 163 to binary.
128)163 1

128

1) 1 1

0
Reading the right hand column of quotients from top to bottom,
this gives 163 = binary 10100011.

A number in the decimal system is based on powers of 10
and is said to have a radix of 10; similarly the binary system
has a radix of 2. To indicate the radix being used, where
necessary, the radix will be enclosed in brackets at the end of the
number as is standard practice, i.e. 163<10) = 10100011<2)

In addition to the pure or natural binary system discussed
above, the natural binary coded decimal (n.b.c.d.) system is
used in the computer. This uses four bits for each decimal

place, these bits being the natural binary representation of each
decimal digit, i.e.

163,,o) in n.b.c.d. is 0001 0110 0011
The instructions to the computer are given in another num-

ber system with a radix of 8 known as the octal code.
The method used to convert a pure binary number to octal is
similar to that for converting n.b.c.d. to decimal. The number
is divided into groups of three digits starting from the right,
then the decimal equivalent of each group is written down,
as follows:—

00/001/001
0 / 1 / 1 00001001(2) - 011(8)

Another example:—
11/101/111
3 / 5 / 7 11101111,2, - 357(8)

Because the computer uses only an eight-bit instruction word
two bits appear in the left hand group, and therefore the maxi-
mum octal number that can appear in the left-hand place is 3.

Binary arithmetic.—This is best started by examining the
following rules for adding two binary numbers:—

0 + 0 0
0 + 1 - 1
1 + 0 = 1
1 + 1 = 0 carry 1 to next most significant position.

Where the addition of two Is takes place, as there is no symbol
to represent any number greater than 1, a carry to the next

WIRELESS WORLD, AUGUST 1967

most significant position occurs. This is the same as saying
20 + 2° = 21 or 1 + 1 --=•- 1 0. Throughout this article, to
indicate in a table that a carry has been generated the following
symbolism will be used:

1 + 1 - 0->1
The next step is to add two four-bit binary numbers.

The working is as follows:—
242322212° (positional values)
1 1 1 1 +
0 1 1 0

From this it is seen that in order to add two binary numbers it
is necessary to be able to add three digits to take into account
any carry that may be generated during the previous addition.
Another addition table is obviously called for:

A
0 +
1 +
0 +
0 +1 +1 +
0 +1 +

B
0 +
0 +1 +-
0 +
1 +
0 +
1 +1 +

c
0 ----=
0
0 -1 =
0 -1 =
1 _

1 =

0
11
1
0
0
01

-»0
->Q
-*0
-3»0->1->1
-»1
->1

Binary subtraction can be explained by a similar table.
However, here a " borrow " can occur instead of the carry
in addition. In the following table a borrow is indicated in the
same way as a carry i.e. -> 1.

A B C
borrow0 — 0 with an 0

0
0 — 1
1 — 1
0 — 0
0 — 1
1 — 1
1 — 0

0-^0
1 ->01 ->
0->1 ->
0-^
1 ->

As an example we will subtract 0 1 from 1 0, as follows:—
21 2° (positional values)
1 0 (minuend)
^_1_ (subtrahend)
"0~T (difference)
1 (borrow)

Starting with the right hand column 0 — 1 — 1 —> 1. In the
left-hand column we have already borrowed a 1, so this has to
be returned and we get:—1 — 0 with a 1 borrow Q —> Q.

Henceforward a borrow will be called a carry and an unneces-
sary term dispensed with.

Multiplication can be performed by repeated addition
(e.g. 8 x 4 = 8 + 8 + 8 + 8 - 32) and division by repeated
subtraction, e.g. 32 -: 8s [({(32 — 8) — 8} — 8) — 8] 0.
The quotient being obtained by counting the number of times
subtraction was necessary to reduce 32 to 0, that is 4.

Subtraction can be performed by use of the addition process,
although our computer does not normally operate in this
mode. The computer, however, will demonstrate the process,
so an explanation is called for here. Two methods can be
used, known as the Is complement method and the 2s comple-
ment method.

First the Is complement method. Consider 1 0 1 1 —
0 1 0 1 . First, it is necessary to form the Is complement
of the subtrahend 0 1 0 1 . This is done by changing all the
Is to Os and all the Os to Is, to give 1 0 1 0 . To complete
the subtraction we now add the two numbers and perform
the " end around carry" operation:—

1 0 1 1
+ 1 0 1 0

1 0 1 0 1
+ ; — > 1 (end around carry)

0 1 1 0 (sum, and result of subtraction)
f~

We have used a four bit word and a carry is generated that
exceeds our word length. This carry is added to the result of
the first addition—hence " end around carry". Thus
1 0 1 1 — 0 1 0 1 - 0 1 1 0 .

In the 2s complement method, first the 2s complement of
the subtrahend is formed. This is equal to the Is complement
+ 1. Using the previous example again (1 0 1 1 — 0101) ,
the 2s complement of 0 1 0 1 1 0 1 0 + 1 1 0 1 1. Then:

2* 23 22 21 2"i o i i
+ 1 0 1 1

1 0 1 1 0
1 1 1

but here the carry generated in the 24 position is ignored.
Our computer forms the Is complement of a number by

adding to it a series of Is and ignoring any carry that may be
generated.

Thus to form the Is complement of 0 1 0 1:—
0 1 0 1

+ 1 1 1 1
1_OJJ)
I X (ignore carries)

Other processes in binary arithmetic, such as operations
with positive and negative numbers, will be discussed in the
section dealing with programming the computer.

REMINDER ON BOOLEAN SYMBOLS AND LOGIC ELEMENTS

Boolean symbols do not represent quantities but logical
states or conditions. For example, the symbols A andJJ could
represent two switches in the " on " position, while A and B
could represent the same two switches in the " off" position.
If these switches were connected in series with a battery and
lamp, when both switches were " on " this condition would
be symbolized as " A and B ", and it would result in the lamp
being lit. If any other condition existed, i.e. A and B (A on,
B off), or A and B (A off, B on) or A andl& (both off), the lamp
would not light. This is a demonstration of the Boolean AND
function—the lamp is lit only when the condition A AND B
obtains. If the condition of the lamp being lit is represented by
the symbol C then it can be said that

A and B = C or A . B = C or AB = C
These three statements are identical; the two letters with

a dot between, or close together, are shorthand for the AND

function. The condition A is read as NOT A. Proceeding further
with our two switches and lamp we can therefore say that

where C (NOT C) indicates that the lamp is not lit.
If the switches were connected in parallel then either switch

being " on " would result in the lamp being lit. Here it is
true to say that the condition " A or B " would result in C.
The Boolean symbol for this function is +, which is read as OR.
With the switches connected in parallel the following equations
are true:—

A_+ B = C (A O R B = C)
AB =--= C (NOT A and NOT B = NOT C)

In the above example A (NOT A) was represented by the
absence of something (absence of conduction path), but it is
important to remember that NOT A really means the presence

WIRELESS WORLD, AUGUST 1967

of something other than A—in fact its opposite state A. Thus
A and A can be represented by any pair of denned electrical
states: +6V and +2V, 0V and -4V and so on.
Logic elements.—The simplest of the circuits performing
the above Boolean functions is the NOT gate. With this, for
example, state A can be negated into A or vice versa, and the
graphical symbol for such an element is shown in Fig. 2. If the
input of this element goes_to earth the output will go to some
voltage above earth. The 1 in the centre of the circle indicates
that the element will negate one input, while the arrow shows
the direction of information flow.

The time has come to introduce one piece of terminology
that will be used throughout the series of articles. The fact
that a voltage exists at a particular point in a circuit can be
represented by the terms " true ", " up ", 1 (binary), —ve,
+ ve and so on, and the fact that a voltage does not exist can
be represented by " false ", " down ", 0 (binary), 0V, etc.
The use of Is and Os to define voltage levels has been rejected,
as far as this series is concerned, for fear that they may become
confused with binary Is and Os, i.e. numerical data. The
term " up " will be used to indicate that a voltage is present
and " down " to indicate that that line is at earth potential.

An extension of the NOT gate is the NOR gate. Electronically
they are almost identical but the NOR gate has more inputs,
as shown by the symbol in Fig. 2. In the logic element used
in the computer any input going " up " will result in the output
going " down" and for the output to be " up" all inputs
must be " down ". More or fewer inputs may be provided.

Next in Fig. 2 is shown the symbol for an element perform-
ing the previously discussed OR function. In the practical

OR GATE FORMED BY
COMBINING NOR & NOT _AND GATE

Fig. 2. Symbols for basic logic elements used in the computer.

device any one of the inputs going " up " will result in the
output going " up " as indicated by the " 1 " in the symbol,
and the output will be " down" only when all the inputs
are " down ".

An OR gate can be formed by the combination of a NOR and a
NOT gate as shown in Fig. 2, and in fact this method is used in
certain parts of the computer. Any " up " input to the NOR
gate will cause its output to go " down ", and the resulting
" down " input applied to the NOT gate will cause its output
to go " up ".

The final symbol shown is for an AND gate, the " 4 " indi-
cating that all four inputs have to be " up " simultaneously
before the output will go " up", and (switches-in-series
example in Boolean algebra section). More or fewer inputs
can be provided, within limits, as required.

Continued from page 3

THE BASIC CIRCUITS
In the circuit diagrams Figs. 3-12 an indication is given
in the captions of the cost of each circuit block, based on
the prices in existence at the time of writing for quantity
buying. This, however, is only intended as a rough guide.
Components only, and not mounting boards, wire, solder,
etc., are taken into account. The final cost will depend to
a great extent on the form of construction employed.

It is very important to note, especially when bi stables
and flip-flops are discussed, that a change of signal level
from " down " to " up " is a negative-going voltage
change, and a change of signal level from " up " to
" down " is a positive-going voltage change.

The circuit of the NOT gate is shown in Fig. 3. This is an
exception to one of the rules explained in the " reminder "
section, in that a " down " signal can be represented by an
open circuit—a feature that is used to advantage in the
computer's order decoder. When the input is earthed the
base of Trl is held at a positive potential by virtue of
the potential divider between the +V supply and earth
(0V) formed by R! and R2. Trl will therefore be switched
off and its collector held at a negative potential. When the
input goes " up," Trl base goes negative, and Trl switches
on and connects anything coupled to the output effectively
to earth.

The NOR circuit, shown in Fig. 4, can be seen to be al-
most identical to the NOT circuit except that more inputs
are provided. The operation is exactly the same.

The circuit of an AND gate is shown in Fig. 5. When
none of the inputs is " up " all the inputs are connected
to earth (0V line), hence all the input diodes (D1-D4)
are forward-biased by virtue of Rj. As a result the left-
hand side of R2 is connected to earth, and the right-hand
side of R2 and the base of Trl are held at a positive poten-

WIRELESS WORLD, AUGUST 1967

tial by means of R3. Trl is cut off and its collector is
negative. This negative potential is felt at the base of
Tr2 which is held in the conducting state and the output
is therefore " down." An input going " up " results in its
associated diode becoming reverse-biased; this, however,
has no effect on the circuit as the other three input diodes
remain forward-biased and Trl base is still held positive.
When all the inputs are present, however, Trl base goes
negative by virtue of the potential divider formed by R15

R2 and Rs between the negative and positive supply
1'nss. Trl switches on and its collector falls to almost
0V. Tr2 base goes positive, because R6 is connected to the
positive rail, and the output goes " up " as Tr2 switches
off.

In certain parts of the computer, as has already been
stated, a " down " signal can be an open circuit. In these
cases the OR circuit shown in Fig. 6 is used. In all other
cases the OR function is performed by a combination of the
NOR and NOT gates as described in the " reminder " sec-
tion on logic elements.

To enable the computer to multiply, as will be seen, it is
necessary to compare the states of two circuits, a and b.
We will call the outputs of these circuits (indicating their
states) A, A and B, B. A comparator is required for this
purpose, and its output must be " up " when one of two
conditions exists: A and B present or A and B present.
The output must be down when the conditions AB or AB
exist. There is a large number of possible ways of per-
forming this operation, the logical layout used in the com-
puter being shown in Fig. 7. The numbers written out-
side the gates are their circuit reference numbers, and
this method of identification will be used throughout
the computer description. The comparator is made up
from two AND gates, one NOR gate and one NOT gate, the
NOR and NOT gates forming an OR gate. When AB are
present AND gate 4 will open and the output of NOT 12
will be " up." When AB are present AND gate 5 will open
and the output of NOT 12 will again be " up." For any
other combination of A and B the output of NOT gate 12
will remain " down."

To economise on components the comparator is built
as a single circuit and is depicted by the symbol in Fig. 8.
the AB inputs having a line drawn through them. The
circuit is shown in Fig. 9. Here, assume that inputs A
and B are " up " (A and B being therefore " down ")
Dl and D4 will be reversed-biased by these input signals
and D2 and D3 will be forward-biased by R\ and R2.
As a result the lower ends of Rj and R2 will be connected
to earth, together with the left-hand side of R3 via D5
and D6. The base of Trl will be positive and the re-
mainder of the conditions that exist will be as for the
previously described AND gate. If the input condition
changes to, say, A and B up, Dl and D2 become reverse
biased, Trl base goes negative via R! and, as for the AND
gate, the output goes " up." While this condition exists
D6 becomes reverse-biased, preventing the input circuits
from interfering with one another. The action for the
input AB is similar, R2 providing the drive for Trl and D5
becoming reverse-biased.

Three types of flip-flop are used, the actual choice
being determined by circuit requirements. The circuit,
together with the symbol used in each case, is shown in
Fig. 10.

The flip-flop provides a convenient means of intro-
ducing a time delay and obtaining reasonably shaped
pulses of known width. In its stable state Tr2 will be
held switched on by R2, Tr2 collector will be at almost
0V and the base of Trl will be positive because of R6
being connected to the positive line. The flip-flop will
remain in this condition until a negative-going edge is
applied to Q (a signal change of " down " to " up ").
This will switch Trl on, resulting in a positive-going
change at Trl collector, and this is felt at Tr2 base via
C2. Tr2 switches off and Trl is held on by R4, Tr2
collector now being negative. The flip-flop will remain
in this state for a length of time determined by the time
constant of C2 R2, and when C2 has discharged the
flip-flop will regeneratively switch back to its original
condition.

WIRELESS WORLD, AUGUST 1967

A further note regarding terminology is in order here,
the flip-flop has two outputs which are labelled OUT and
OUT respectively. In the text they will be referred to
respectively as the NOT output and the output. In the
stable state of the circuit the output is " down " and the
NOT output is " up." When triggered the reverse is
true.

The bistable is used throughout the computer in large
numbers. The basic circuit used is the same in all cases,
though quite a number oi variations occur. The actual
type of bistable being used can be deduced from the
number and nature of the inputs. However, four main
basic types emerge, these being the set/reset d.c. bistable,
the set/reset a.c. bistable, the counter bistable and the
shift-register bistable. The circuits of all four types are
shown in Fig. 11 (a) (b) (c) and (d).

The set/reset d.c. bistable (a) will be described first.
When power is applied to the circuit it will assume a
state determined by the various component tolerances.
Let us assume that Trl switches on. Trl collector will be
at nearly 0V so Tr2 base will be positive (R7). The
collector of Tr2 will be negative as will the base of Trl
(R5), holding Trl in the on condition. The circuit will
remain in this state until something is done to disturb it.
If a short negative pulse is applied to the reset terminal,
this switches Tr2 on, and, by virtue of the cross coupling
resistors, R2 and R5, Trl switches off. The switching
action is a regenerative one in that the voltage changes at
each collector are felt at the opposite base where they are
in the right direction to assist the switching. Capacitors
G! and C2 are commutating or speed-up capacitors that
reduce the switching time. When a pulse is applied to
the reset terminal the output does " down " and the NOT

output goes " up." When a pulse is applied to the set
terminal the output goes " up " and the NOT output
goes down.

The set/reset a.c. bistable (b) is very similar except
that the trigger pulses are a.c. coupled as shown. Here a
positive pulse is used, or a positive-going voltage change
(" up " to " down "). This is applied to the base of the
transistor that is switched on, the positive edge turning
it off and reversing the state of the circuit. Because
of this the set/reset connections are transposed. An
additional reset input is provided which is d.c. coupled,
and this enables the starting condition of the bistable to
be established. In some cases it is necessary to provide
more than one set or reset input; this is achieved by
duplicating Dl and C3 or D2 and C4 as required.

The counter bistable (c) is an a.c. coupled bistable
with a gating facility. The starting condition is established

WIRELESS WORLD, AUGUST 1967

r
by applying a negative pulse to the reset terminal. Trl
will now be switched off, its collector will be negative
and its base positive. These potentials are applied to Dl
in such a way as to reverse-bias it. D2 is, however, for-
ward biased. If now a positive pulse is applied to the
" complement" terminal, D2 can conduct, but the
reverse-biased Dl cannot. In conducting D2 applies a
positive pulse to the switched-on Tr2, turning it off and
reversing the condition of the bistable. Now the state of
affairs has changed and Dl is forward-biased and D2
reverse-biased, so a subsequent pulse applied to the
" complement " terminal will be steered by the diodes
to Trl base to turn it off. From this it can be seen that
each positive pulse applied to the " complement". input
will reverse the state of the bistable.

The shift register bistable has no additional com-
ponents, R9 and R10 are not connected to Dl and D2

but are brought out as outputs. The complement terminal
has been relabelled S.P. This bistable will be dealt with
fully in the appropriate section of the computer descrip-
tion.

Indication of the states in various parts of the com-
puter is provided by neon lamps driven by 60V silicon
transistors (Fig. 12). A fixed potential is applied across
the neon and R3 that is below the striking voltage, and
another voltage, within the transistor rating, is applied
across the transistor. Both voltages are supplied by the
potential divider Rj R2. When a logical " up " signal is
applied to R4 the transistor switches on and the neon
strikes and remains in this condition until the " up "
signal is removed.

(Next month we will begin to consider the overall system
design of the computer.}

WIRELESS WORLD, AUGUST 1967

WIRELESS
WORLD
DIGITAL
COMPUTER
2 —System design : the arithmetic unit and store: how information is
transferred from one part of the computer to another

THE heart of the " arithmetic unit" shown in
our simplified schematic Fig. 1 last month is a
unit called the adder/subtracter. The function

of the adder/subtracter is to either add or subtract two
binary numbers. The digits to be dealt with are fed into
the circuit a pair at a time, starting with the 2° column,
proceeding to the 21 column, and so on. At this point
we can define six input lines to the adder/subtracter:
control signals to tell the unit to add or subtract, and data
signals representing the digits to be manipulated, which
we shall call A and B that require the four input lines,
A, A, B, B.

If, as a result of an arithmetic operation, say in the
2° column, a " carry " is generated, this carry must be
stored until the 21 digits appear at the input. Some form
of storage is obviously called for, the output of the store
being delayed one " digit time " and fed back to the
input of the adder/subtracter. This store is called the
" carry store " and its outputs are C and C. The output
of the adder/subtracter, the result of the arithmetic
operation, will be called the SUM output and this, for
reasons to be seen later, will be negated to_form, in
addition to the SUM output, a NOT sum output (SUM).

The carry store is called upon to store only one digit
at a time, so this function may be performed by a bistable.
As a bistable assumes an indeterminate state at switch-on,
a means must be available to reset it; therefore a carry-
store reset line is another required input to the adder/
subtracter. In the section on binary arithmetic last month
it was stated that in order to form the Is complement of a
number it was added to a series of Is and any carry

The words "add" and "subtract"
in these equations are the control
signals. It will be noticed that the
term ABC is common to both the
above equations. From this we can
design the adder/subtracter circuit
to conform to the equations.

Fig. 14 shows the logical diagram
of the adder/subtracter. It can be
seen that it is roughly divided into
two sections, one for the sum and
one for the carry. AND gates 4, 7,
8, 9 provide outputs corresponding
to the SUM equation. These are OR
gated by OR gate 2 and applied to
NOT gate 3. The output of NOT gate
3 is the SUM output. This is applied
to NOT 4 to provide the SUM output.
When input conditions are such that
the SUM and gates 4, 7, 8, 9 outputs
are " down," the output of OR 2 can
be considered to be an open circuit,
the output of NOT 3 will be " up ",
providing a SUM output, and the out-
put of NOT 4 will be "down". When
the inputs change and a SUM output
is required, an AND gate opens and
the conditions at the outputs of NOTS
3 and 4 reverse.

Up to bistable 1 the operation of the
tarry section of the circuit is identical.
It will be noticed that AND 4
is common to both the sum
and c a r r y c i rcu i t s (the
common term ABC in the sum and carry equations).
The terms of the add and subtract equations are AND
gated with the " add " and " subtract " control signals.
We can now state that each pair of digits (A and B) are
presented to the adder/subtracter under the controlling
influence of the shift pulse mentioned above. The output
of the generator that provides this pulse can normally be
considered to be " down ". At a given time the output of
this generator goes " up " (negative-going), and stays
" up " for the length of the pulse, and then goes " down,"
forming the trailing edge of the shift pulse (positive-
going). On this positive-going trailing edge the next
pair of digits appear at the adder/subtracter input and the
SUM output of the adder/subtracter is stored.

Bearing this in mind, we will proceed with the descrip-
tion of the carry circuits. We will assume that input
conditions are such as to open one of the carry AND gates.
The output of NOT 2 will be " up " and NOT 1 " down ".
As a result bistable 1 will be set and its output will be
" up " (NOT output " down "). Bistable 2 is of the shift-
register variety. Reference to Fig. 11 (d) last month will
show that the outputs of bistable 1 will provide bias for
the input steering diodes Dl and D2. Now the trailing
edge of the shift pulse is applied to the S.P. (shift pulse)
input of bistable 2. During this trailing edge period three
things happen: firstly, this positive change is applied to the
switched-on transistor of bistable 2 by the steering diodes
to turn it off (setting bistable 2); secondly, a new set of
digits appear at the adder/subtracter input; thirdly, the
output of the SUM circuit is stored. Bistable 2 (the carry
store) is now set so C appears at the adder/subtracter
input. If this new set input condition is such as not to
require the generation of a carry, all the carry AND gates
will be closed, bistable 1 will reset as the output of NOT
1 will be " up ", so on the trailing edge of the next shift

Fig. 14. Logical diagram of adder I subtracter.

pulse bistable 2 will reset, and the CARRY output goes down.
This sequence of operations is illustrated in Fig. 15.

The reset carry store provides a means of putting the
carry store in the reset condition before operations
commence. The inhibit carry store input is held up to
ensure the carry store can never set during the formation
of the Is complement of a number.

The numbers to be operated on by the adder/subtracter
must, as has previously been shown, be applied to the
input a pair at a time starting with the least significant
position (2°), and the SUM output must be stored. These
functions are carried out by shift registers.

A shift register is capable of storing a binary word,
and so the shift registers used in this computer must be
capable of holding eight bits. Imagine an oblong block
divided into eight separate compartments, each of which
will hold one binary digit. This is shown pictorially in
Fig. 16. In (a) the shift register compartments all contain
0, and " queued up " at left hand side is a word that is to
be placed in the register. The 1 in the 2° position of this
word is already presented to the input of the register.

10 WIRELESS WORLD, SEPTEMBER 1967

If now a pulse is applied to the S.P. input, the 1 in the 2°
position will enter the extreme left-hand compartment,
as shown in (b). Another shift pulse will move in the
word one further position, (c) and so on. After eight
pulses have been applied the register holds the complete
word, (e).

If further pulses were applied each digit would appear
at the output in turn, starting with the 2° position. This is
precisely what we require to feed the adder/subtracter.
After eight pulses the
register would be
"empty". If a register
containing a word is
connected as shown in
Fig. 16 (f) and eight
pulses are applied, each
digit appears at the out-
put as before, but now
the output is connected
back to the input, so the
word re-enters the reg-
ister, returning to its
original position. Pro-
ceeding further, if two
registers were connected
as in (g) and eight shift
pulses were applied to
both registers simultan-
eously, the woid held in
the left-hand register
would end up in the
right-hand register.

Having now dealt with the register as a black box,
we can consider the logical diagram of the device, Fig. 17.
As can be seen, the shift register consists of eight bistables
of the type depicted in Fig. 11 (d) last month, each bi-
stable forming one of the compartments shown in Fig. 16.
When a bistable is set, its output is " up " and it can be
considered to contain a binary 1. When it is reset, its
NOT output is " up ", corresponding to a binary 0 being
scored. The state of each bistable determines which of
the steering diodes in the bistable next in line is biased
on or biased off. In this way shift pulses are steered to
the appropriate transistor in each bistable so that on the
trailing edge of a shift pulse each bistable will assume the
state of the bistable immediately on its left.

Five shift registers are used in the basic computer.
Two of these require a common reset line that is d.c.
coupled to each bistable (Fig. 11). When this line goes
negative the register is " cleared ", that is, all bistables
are reset and the register contains eight Os. A " set d.c."
facility has to be provided for each bistable in the other
three registers. This allows individual bistables to be
set to enter a word into the register in parallel (all digits
simultaneously). To avoid confusion all the inputs and
outputs that each black box requires will not be shown in
future explanatory diagrams—only those relevant to the
points under discussion will be shown.

Fig. 18 depicts the adder/subtracter connected to two
shift registers. One of these registers has been called
the accumulator, because it not only holds the word that
will provide the A and A inputs to the adder/subtracter
but also accumulates the result of each operation per-
formed by the adder/subtracter. The second regiite:
is simply called a register. This holds the B and B inputs
to be fed to the adder/subtracter. It has a regenerative
loop, as shown, and this means that each digit the register
holds is sequentially fed to the adder/subtracter and is also
fed back to the input of the register. Any word held by
the register will therefore circulate. The C and C inputs
to the adder/subtracter are internal to this unit and are
provided by the output of the carry store as previously
described. Though it is not quite so obvious, the accu-
mulator also has a regenerative loop. This is completed
by the connection of the SUM output of the adder/sub-
tracter to the input of the accumulator.

We now have a working unit, and it would be helpful
to use this to analyse in detail the addition of two binary
words. During this analysis the reader is asked to refer

to Fig. 14 (adder/subtracter logical diagram) and Fig. 18
(part of arithmetic unit). It will also be helpful to con-
sider the addition of the two words used in the binary
arithmetic section last month to demonstrate binary
addition. These, when extended to eight bits, are:—

27 26 2s 24 23 22 21 2°
0 0 0 0 1 1 1 1 A accumulator

+ 0 0 0 0 0 1 1 0 B register
First we will reset all bistables in the unit and then place
0 0 0 0 1 1 1 1 in the accumulator and 0 0 0 0 0 1 1 0 in the
register. Assume that the S.P. inputs of the adder/sub-
tracter, accumulator and register are connected together
to ensure that all will receive simultaneous shift pulses,
and that the " add " input of the adder/subtracter is
"up" and the "subtract" input down.

Before first shift pulse 2°—The inputs of the adder/
subtracter are ABC, and gate 7 is open. The SUM output
is " up " as is the input to the accumulator.

On trailing edge of first shift pulse—The SUM
output sets the 27 bistable in the accumulator (which is
vacant as the contents of the register and accumulator have
simultaneously moved one place to the right). Also by
virtue of the register regenerative loop the 0 that was in
the 2° position of the register is now written in the 27

position.

Before second shift pulse 21—Inputs to the adder/
subtracter are now ABC. All sum AND gates are closed,
so the SUM output is " down." Carry AND gate 1 opens to
set bistable 1 (bistable 2 will not set at this stage).

On trailing edge of second shift pulse.—Contents of
accumulator and register shift one place to the right.
The SUM output of the 2° operation^ moves to the 26

position of the accumulator and the SUM output of the 21

operation writes an 0 in the 27 position. The 1 in the 21

position is written in the 27 position of the register.
Because bistable 1 was set the carry store also sets.

Before third shift pulse 22.—Inputs to the adder/
subtracter are now ABC (as carry store is now set) AND
gate 4 opens, dictating a SUM and carry output. As a
result, bistable 1 is held set.

On trailing edge of third shift pulse.—Accumulator
and register shift one place to right. SUM output sets 27 in
accumulator (accumulator contents are now 27 —1,
26=0, 25=1). Carry store remains set as bistable 1 was
set.

Before fourth shift pulse 23.—Inputs to adder/sub-
tracter are now ABC. SUM output " down," bistable 1
set as AND 2 is open.

On trailing edge of fourth shift pulse.—An O^s
written in 27 in the accumulator because of the SUM
output. The accumulator now holds (27 = 0, 26= 1, 25 = 0,
24=1). Carry store remains set.

Before fifth shift pulse 24.—Inputs to adder/subtracter
are now ABC. AND 9 opens, SUM output goes " up."
Bistable 1 resets as no carry AND gates are open.

On trailing edge of fifth shift pulse.—SUM output
written in the 27 position of the accumulator, which
now holds (27 = 1, 26=0, 25=1, 24=0, 23=1, 22-0,

12 WIRELESS WORLD, SEPTEMBER 1967

2l = Q, 2° = 0). Because bistable 1 was reset the carry
store now also resets.

So far rive shift pulses have been applied. Eight shift
pulses are required in all to complete the operation.
For all the further shift pulses the input to the adder/
subtracter will be ABC, so all AND gates will be closed
and no SUM or carries will be propagated. However, each
additional shift pulse will move the contents of the
accumulator and register a place to the right, at the end
of the operation the accumulator will hold 0 0 0 1 0 1 0 1,
which is the result of the addition, and the register,
because of the regenerative loop, will hold 0 0 0 0 0 1 1 0 .

The reader is now invited to analyse what would
happen if the " subtract " input of the adder/subtracter
were " up " and the " add " input " down " and eight
further shift pulses were applied. This is subtracting
the word that we have just added, and therefore the
accumulator should contain its original number
0 0 0 0 1 1 1 1 at the end of the operation.

One limitation of the circuit now emerges. It is only
possible to subtract the contents of the register from the
contents of the accumulator and not vice versa} i.e. A—B
only and not B—A.

It will be remembered that the formation of the Is
complement of a number was performed by adding it to
a series of Is and preventing any carries from being
generated. The word to be complemented is placed in
the accumulator, and adder/subtracter control signals are
applied as follows. " Add " is " up," " subtract " is
" down," and inhibit carry store is " up " (this means
that the carry store cannot set so the C input to the
adder/subtracter can never go " up"). To avoid the
necessity of setting all the bistables in the register to
provide the series of Is, all that is done is that the " set
d.c." input of the 2° bistable in the register is made to
stay " up " for the complete operation. This means that
the 2° bistable cannot reset and therefore B is " up " at
the input of the adder/subtracter for the entire operation.
This has the same effect as setting all the bistables in the
register. If under these conditions eight shift pulses are
applied, the word in the accumulator will be comple-
mented, as was shown in the binary arithmetic section,
i.e. 1+0—1 and 1 + 1 = 0 ignore carry.

If we had a button that when pressed provided eight
shift pulses to the register, accumulator and adder/
subtracter, then, with the circuit of Fig. 18 we could add,
subtract and complement with the press of a button.
If we put the binary equivalent of decimal 7 in the
register, selected " add," and pressed the button four
times, the result in the accumulator would be 7 + 7 + 7 + 7

= 28, which is the same as 4x7. In other words we have
multiplied 7 by 4. However, this is a rather cumber-
some method of multiplying, especially if the multiplier
is, say, 50, requiring that the button be pressed 50 times.
So, in order to multiply, what is required is some method
of performing addition the number of times specified
by the multiplier. This is achieved by storing the mul-
tiplier in a shift register, which will be called store 1.
The multiplicand, which is held in the register, is con-
tinuously added to the contents of the accumulator,
each addition being counted on a counter. The contents
of the counter are continuously compared with the
contents of store 1 (the multiplier) and when these two
numbers are equal the additions are stopped. The
multiplicand will have then been added to the accumulator
the number of times specified by the multiplier.

The counter used in this multiplication process consists
of a chain of bistables, as shown in Fig. 19, one word-
length long. They are of the counter type depicted in
Fig. ll(c). The output of each bistable is connected
to the " complement " terminal of the next. Each stage
will divide by two and the counter will count according
to the rules of natural binary as shown on p.367 last
month. Bear in mind that each input pulse to this type
of bistable will reverse its condition and that this will
only happen on a positive-going edge, i.e. the preceding
bistable's output going from " up " to " down." It
will also be noticed that a common reset line is provided
to ensure that the counter starts at 0. It is left as an
exercise for the reader to work out the condition of the
various bistables in the counter for each successive
input pulse. This should conform to the table given
last month. As eight places are involved the final
count will be 255 < 1 0) or 11111111(.2) After this the
next pulse will return the counter to all Os and the
counter will start again.

Two other units are necessary for the multiplication
process. These are a store (labelled Store 1) and a com-
parator. Store 1 is a standard shift register; it does not
require a common reset line but individual d.c. set inputs
have to be provided for each bistable. The comparator
must be able to determine when the word held in store 1
is the same as that held in the counter. It has two outputs
which are called EQUAL and EQUAL. To achieve this it is
necessary to compare the output and the NOT
output of each bistable in store 1 with the output and
the NOT output of the corresponding bistable in the
counter. Eight comparator gates (Fig. 9 last month),
three AND gates and one NOT gate are required. The
logical circuit is shown in Fig. 20. For the EQUAL output
to be able to go " up," AND 12 must go " up." For AND
12 to go " up " both AND 10 and AND 11 must be " up."
For AND gates 10 and 11 to be " up " all the comparator
gates must be " up." Finally, for all the comparator
gates to be " up " the bistables in the counter and store 1

WIRELESS WORLD, SEPTEMBER 1967 13

must J3e_in identical conditions. For any other condition
the EQUAL output will be " up." Fig. 21 shows how the
interconnection of the counter, comparator and store 1
are drawn symbolically, the " 16 " interposed in the
single wires to the comparator showing that there are in
fact 16 wires.

We have not yet discussed division. Although this
does not introduce any real difficulty, the explanation is
best left until later on. At present our computer consists
of two divorced units with no method of inter-communi-
cation. These are the skeleton arithmetic unit shown
in Fig. 18 and the counter/comparator/store 1 assembly
shown in Fig. 21. It is necessary now to integrate these
two units, and to do this some extra gating and a further
two storage registers will be introduced. These storage
registers are used to hold words for future use by the
arithmetic unit of the computer or to store the results of
calculations. Fig. 22 shows the new logical diagram of the
computer. It is a more complete representation of how
the machine is organized, and the reader is advised to
become well acquainted with this diagram. A number of
the inputs and outputs to various parts of the computer
do not appear to be connected to anything at all. All these
connections either go to or come from the order decoder

or the control unit and are marked either DECODER or nect the SUM output of the adder/subtracter to the input
CONTROL UNIT to indicate this. of the accumulator. This loop is similar to that depicted

It is necessary to be able to move words (data) about in Fig. 18 with one important difference; the NOT out-
the computer from the stores to the register or accumu- put of the register and the SUM output of the adder/sub-
lator and vice versa. Most of the extra gating shown in tracter are not fed back as was done before. Instead, the
Fig. 22 is included for this purpose. NOT outputs are reformed by negating the outputs at the

When it is desired to perform an arithmetic operation inputs of the register and accumulator by the NOR gates
the outputs from the order decoder close all the AND 6 and 7, and 8 and 9, respectively. This results in an
gates of Fig. 22 with the exception of AND 13 and AND 15; economy of components as control gating has only to be
these complete the feedback loop of the register and con- applied to the outputs and not to the NOT outputs.

14 WIRELESS WORLD, SEPTEMBER 1967

If it is desired to add or subtract, the appropriate
instruction is given to the adder/subtracter by the de-
coder, which also applies 8 shift pulses to the register and
accumulator. When it is wished to multiply, the multi-
plier is put in store 1, by a method to be described, and
the multiplicand is put in the register. The order de-
coder tells the adder/subtracter to add and tells the control
unit that multiplication is to take place. At the start of
each addition the control unit provides an input pulse
to the counter which advances by 1. At the end of the
addition, which has resulted in a pulse to the counter that
makes the contents of the counter equal to the contents
of store 1, the EQUAL output of the comparator is
" down." This informs the control unit that multipli-
cation is complete and no further additions take place.

Division is performed by continuous subtraction, as
was shown in the binary arithmetic section. If, for instance
we wish to divide 16 by 4, we could subtract 4 four times
to get our answer. So 16 could be put in the accumulator
and 4 in the register (A—B) and the counter could be fed
from the control unit in such a way as to count each sub-
traction. The control unit could be told to stop the sub-
tractions when the accumulator was reduced to 0. This

would work well if the divisor were a factor, as in our
example (16—4). What would happen if the divisor
were not a factor, say 17+4? The contents of the ac-
cumulator after each subtraction would be as follows:
17, 13, 9, 5, 1, —3, —7 . . ., etc. In other words, the
accumulator contents would not be reduced to zero at the
end of a subtraction and the computer would not stop.
In view of this the computer is told to subtract until the
accumulator contents go negative. This may be con-
veniently detected by the carry store being set at the end
of a subtraction. From our example it can be seen that this
occurs when the accumulator holds —3, but to achieve
this we have performed five subtractions and the counter
will hold five as an answer, which is obviously incorrect.
So this procedure is again modified. When the control
unit is instructed by the decoder that division is to take
place it provides one output pulse to the counter for every
subtraction except the last one, so the counter will hold
the number of subtractions — 1 at the end of the oper-
ation. In our example 17-'r4, the counter will hold 4,
which is correct. The accumulator holds —3 and the
register holds the divisor which was 4. If we now add,
the accumulator will hold -3+4=1 which is the re-
mainder. After division and the subsequent addition the
counter holds the quotient and the accumulator holds the
remainder.

Now suppose we want to keep this remainder for a fur-
ther operation and before we need it we have to perform
another arithmetic operation which will require the use of
the accumulator. We will therefore have to transfer the
1 in the accumulator to a store, say store 3. So the order
decoder will be instructed to transfer the contents of the
accumulator to store 3. Gate 15 will close. Closing the
accumulator feedback loop, gate 17 will open, providing
the accumulator output access to the store. It will be
noticed that only the output is used, the NOT output being
reformed by NOR gates 10 and 11. The inputs to the storage
registers are connected in parallel, the actual selection of
the particular store to be used being carried out by apply-

WIRELESS WORLD, SEPTEMBER 1967 15

ing shift pulses to the required store only. So with AND
15 closed find AND 17 open, eight shift pulses are applied
to the accumulator and store 3. The word that was in the
accumulator will now be in store 3.

When this word in store 3 is again required, say in
the register, an order is given to the decoder to transfer
store 3 to the register. AND gate 13 is closed, closing the
register feedback loop, AND gates 14 and 18 are opened
and eight shift pulses are applied to the register and store
3. The transfer will have then been carried out.

We have only described two of a possible twelve transfer
functions that may be carried out, i.e., the contents of
either the register or the accumulator can be transferred
to any store, and the contents of any store can be trans-
ferred to either the register or the accumulator. As soon as
any transfer instruction is ordered both AND gates 13 and
15 close, and not just one of them as was suggested in the
two examples given.

It was previously seen that the result of a division is
held in the counter. Some means of transferring inform-
ation from the counter must obviously be introduced.
This transfer cannot be a serial one as with a shift register
it will therefore have to be a parallel transfer. This means
that the contents of the counter will be " copied" into a
register. It is arranged that the contents of the counter

can be copied into any of the three stores by the network
of AND gates shown in Fig. 23. Altogether 24 AND gates
are used, divided into three banks of eight. One control
line from the decoder (X, Y and Z) is common to each
bank of eight. There is one AND gate for each binary
position for each store, so the output of each bistable
in the counter is connected to three AND gates. When
a control line goes "up" the output of each AND gate,
associated with that control line, will go "up " if
it is connected to a bistable in the counter that
holds a binary 1. If the counter held 0 0 0 0 0 0 1 1
and line Y went " up " then the outputs of AND gates 35
and 36 would go " up " to set the 21 and 2° bistables in
store 2. Now store 2 will hold 0 0 0 0 0 0 1 1 . Fig. 24
shows the counter transfer gating interconnections.
Figures have been used to represent the number of wires
to simplify the drawing.

Fig. 25 shows the computer as so far described. All
that is required to complete the design is the addition of
the order decoder and the control unit. An arithmetic
unit reset facility has been added as can be seen from the
diagram. This enables the register, accumulator, counter
and carry store to be reset on switch on.

(Next month: design of the control system, by which
instructions are given to the computer.}

16 WIRELESS WORLD, SEPTEMBER 1967

WIRELESS WORLD
DIGITAL COMPUTER
3— More on system design: the order decoder and control unit: how they
translate instructions given to the machine into switching signals for operating
the various control gates.

LAST month we considered the arithmetic unit and its
associated stores, and we ended with a system diagram
(Fig. 25, p. 15)) showing the computer as so far

described. The machine could in fact be used in this
form if all the control gates shown in Fig. 25 were con-
nected to switches and a means were available for gener-
ating batches of eight shift pulses and applying them to
the appropriate registers. But such a system would be
difficult to handle, as one would have to refer to the circuit
diagram to find out which gates to open in order to carry
out any particular operation. Also, it would be almost
impossible to control the computer from a sequential
programming device.

It is the task of the " order decoder " (see Fig. 1
schematic, August issue), on receipt of an instruction
from the operator, to open the correct gates and route
shift pulses to the required destinations. The shift pulses
are applied to this order decoder at low level from the
" control unit " (again see Fig. 1 August issue). After the
destinations of the pulses have been defined the order
decoder amplifies the pulses so that they are capable of
driving a shift register.

To enable an operator to convey instructions to the
machine a language or machine code " understandable " by
both has to be used, and the order decoder is so named
because it translates this code into the gate switching
signals required by the computer. The basis of the code
is a binary word. A five-bit word has 32 possible combi-
nations and in fact would be sufficient to accommodate
the 28 control instructions that the computer is designed
to handle. The control sequence, however, would not
follow any particular pattern and it would be necessary
to memorize all 28 instructions, which would make
operation of the machine rather difficult.

In view of this it was decided to use an eight-bit
control word, split up in such a way as to make memoriz-
ing the instructions an easier task. As mentioned in
Part 1, the instructions are entered by means of a set of
eight switches on the front panel, and there is in fact
one switch for each bit of the instruction word. Each
switch has two positions, one entering a " 0 " and the
other entering a " 1 ".

The operations that the computer will perform can be
divided into four groups: transfer to store; transfer from
store; arithmetic; and miscellaneous. The first two bits of
the instruction word define which group the order falls
in, i.e.

0 0 arithmetic operation
0 1 transfer to store and reset
1 0 transfer from store
1 1 miscellaneous

For transfer instructions the computer is divided into
two parts, " arithmetic unit" and " store ", and the

registers in these parts are given " addresses " within them
as follows:—

Arithmetic unit addresses Store addresses
Register 0 0 1 Store 1 0 0 1
Accumulator 0 1 0 Store 2 0 1 0
Counter 0 1 1 Store 3 0 1 1

During transfer instructions three switches specify the
arithmetic unit address and three switches the store
address, so a typical instruction would be:—

Nature Arithmetic Store
of unit address

order address
0 1 0 1 0 0 0 1

In the light of what has been said it can be seen that
this encoded instruction means " transfer the contents of
the accumulator to store 1 ". If the code pattern were
altered to 10 0 1 0 0 0 1 then the instruction would be
" transfer the contents of store 1 to the accumulator "—
in other words, the nature of the instruction is different
but the addresses are the same.

In order to clear a register and " lose " its contents all
that is necessary is to specify a transfer either from or to
that register, but not specify another address for the con-
tents to come from or go to. For example, either 0 1 0 0 0
010 or 10 000 010 would clear the contents of store 2.

Arithmetic instructions (prefix 0 0) do not require that
an address be specified, and it is necessary to remember
which instruction does what. The left-hand digit in each of
the two groups of three digits is used exclusively for
arithmetic operations, namely for the formation of the
ones complement of a number. The corresponding two
switches always have the same effect on the computer
regardless of the nature of the order (the prefix). This
results in a saving of parts and makes manual operation
of the computer easier.

As was mentioned in the binary arithmetic " reminder "
section (August issue) the control instructions are con-
verted to the octal number system for ease of handling.
All control instructions with the octal equivalent are
listed in the table on the next page, which uses the
following abbreviations:

A=accumulator St.2=store 2
R=register St.3—store 3

Cntr. = counter C —carry store
St. 1 = store 1 T=transfer

A transfer between, say, the register and Store 2 will be
indicated as follows:—T. R->St.2.

It can be seen that the " complement accumulator "
instruction (045 < 8)) is a combination of three instructions,
i.e. add, inhibit carry and set 2° in register.

The logical circuit of the decoder is shown in Fig. 26.
The reader is permitted to shudder at what appears at
first sight a very complicated conglomeration of com-

WIRELESS WORLD, OCTOBER 1967 17

ponents. However, things are not as bad as they may
seem. The single pole switches St through to S8 pro-
vide the means of feeding in control instructions and the
electrical signals resulting from closure of the switches
are correspondingly labelled A to H. It will be noticed
that instructions can be fed in from another source.
Consider Sj. When this switch is open the output of
NOR 15 is " up " and that of NOR 16 " down." When the
switch is closed the output of NOR 15 is down and that of
NOR 16 is up; therefore NOR gates 15 and 16 provide the A
and A inputs to the decoder. This double inversion is
carried out for the other input switches by NOR gates 17
through to 30. The signal lettering A to H corresponds
to the letters heading the columns of the instructions
of the table. Care must be taken not to confuse the As
and Bs of the adder/subtracter inputs with them.

During the following explanations of the decoder
operation it is necessary to refer to the computer logical
diagram of Fig. 25 (September issue) as well as Fig. 26.
First, let us see what happens when we close switch S8.
This results in the order to add, 0 0 1<8) . The nature of
the order is arithmetic, so the switches giving A and B
will be open (0 0), NOR gates 15 and 17 will be " up "
and 16 and 18 " down." The input to the decoder will
therefore be AB gate AND 46 will open and provide one in-
put for gates 47, 48, 49 and 50. As the input is AB, gates
51 and 52 will be closed and NOR gate 31 will be up. This
opens the computer gates 13 and 15, completing the reg-
ister and accumulator regenerative loops. Switch _Sj is
closed, so the input to the decoder, in full, isABCDEFGH.
Gate 49 will open as it already had one input up, AB
from gate 46, and its other inputs are GH. The output
of gate 49 " tells " the adder/subtracter to add. In going
up, gate 49 provides an input for NOR 33 which goes down,
and NOT 34 goes up, providing one of the inputs to gate 63.
The other input for gate 63 is clock pulses from the con-
trol unit. The output of gate 63 goes up and down in
sympathy with the clock pulses triggering flip-flops 1 and
2, providing shift pulses for the register and accumulator.
In all, eight clock pulses are received from the control
unit, and after the last one the contents of the register
will have been added to the accumulator.

The conditions for subtracting are very similar except
that switch S7 is closed and S8 open, and gate 50 opens to
tell the adder/subtract or to subtract. The rest of the
operation is the same as for adding, the register and ac-
cumulator receiving shift pulses.

For multiplication the switches that are closed are S5
and S8. As ABGH is still present, the add AND gate 49
opens, with the same results as before; also gate 47
(ABDE) opens to inform the control unit that multipli-
cation is to take place_ Division is again very similar the
input being ABDEGH. Gate 48 opens to inform the control
unit that division is to take place and gate 50 opens with
the same results as before, i.e. subtract, shift pulses to
R and A.

Switches S3 and S6 inhibit the carry store and set the
2° bistable in the register to form the Is complement.
These are " straight through the decoder " instructions
and as such are not gated with anything else and can be
ignored while considering other aspects of the decoder.

Let us open all the switches except S2, so that the
order's prefix is AB or 0 1, signifying that a transfer to
store is required. All the arithmetic gates will remain
closed as these require a AB input. Gate 51 will open and
the output of NOR 31 will fall, closing the computer gates
13 and 15, breaking the register and the accumulator
feedback loops. Gate 51 also supplies one of the inputs
for gates 53 and 54. As the output of NOR 31 is now down,

The next part of the instruction is the arithmetic unit
address. At this stage we will consider only transfers from
the register or accumulator and not_the counter. Now the
address of the register^ is_0 0 1 (CDE) and that of the
accumulator is 0 1 0 (CDE), and, as shown in the table,
if the transfer is to come from the register then switch
S5 (giving E) will be closed. The input to the decoder is
now 01 0 0 1 or ABCDE. Gate 53 will therefore open and
this in turn will open the computer gate 16, which allows
the register access to the store. Also it will be noted that
when clock pulses arrive, gate 58 can open and close in
sympathy to trigger flip-flop 1 and provide shift pulses
to the register as the output of NOR 32 is up. If the transfer
had been from the accumulator the order would have
been 0 1 0 1 0 or AB CDE. In this case AND 54 would
have opened to open computer gate 17, allowing the
accumulator access to the store, and AND gate 59 would
open on receipt of clock pulses to provide accumulator
shift pulses.

All that remains to be done is to specify the address
in the store. No further control gates have to be opened
and all that is required is to ensure that the correct store
receives shift pulses. Now the address of store 1 is 0 0 1
(FGH), that of_ store 2 is 0 1 0 (FGH) and that of store
three is 0 1 1 (FGH), so it can be seen that on the receipt
of clock pulses gate 60, 61 or 62 will open to provide the
correct store with shift pulses. Note that gates 55, 56 and
57 cannot open as they have a common AB or 10<2)
input.

For transfer from the store, the order prefix is 1 0 or
AB. Gate 52 will open, and this will close computer gates
13 and 15 via NOR 31 and open computer gate 14 to allow
the store access to the arithmetic unit. Gates 53 or 54
cannot open to open gates 16 or 17 as a common AB
input is required for this. Also note that as the output
of NOR 31 is down that of 32 will be up, so one input to the
shift pulse AND gates will be up (58 to 62). The only effect
of setting the arithmetic unit address will be to open

WIRELESS WORLD, OCTOBER 196718

either AND 58 or AND 59 on receipt of clock pulses, to
provide either the register or the accumulator with shift
pulses. __ _ _ _

Selecting the store address FGH, FGH or FGH will
open one of the gates 60, 61 and 62 on receipt of clock
pulses to provide shift pulses for the required store. Also,
as gate 52 is up, gates 55, 56 and 57 have a common input
line up. One of these will open, depending on the address
selected, to open one of computer gates 18, 19 or 20 and
therefore open the output line of the selected store.

We have not yet discussed the parallel transfer from
the counter. First, this is classed as a " transfer to store "
instruction with the prefix AB. Bearing this in mind, if
we now selected the address in the store into which the
counter had to be copied, shift pulses would be applied to
that store. Now this is a parallel transfer, and if shift
pulses were applied to the selected store the information
would be destroyed; so shift pulses to the selected address
must be inhibited. To transfer fronvthe counter we first
select AB and the counter address CDE. Gate AND 51

WIRELESS WORLD, OCTOBER 1967 19

will open, providing one input for AND 63. The other
two inputs are D and E, so AND 63 will open, and this will
cause one of the inputs to NOR 32 to go up. NOR 32
output will go down, as will one of the inputs to each of
the shift pulse AND gates. These cannot now open and
no shift pulses can leave the decoder. In opening, gate 63
provides a common input for gates 64, 65 and 66. The
store address selected (FGH, FGH or FGH) opens one
of these gates when clock pulses are applied; therefore
the X, Y or Z output goes up. These, of course, com-
municate with the counter transfer gating. The only
reason for feeding gates 64, 65 and 66 with clock pulses
is to ensure that no inadvertent transfer can take place
while moving the control switches until clock pulses are
deliberately applied.

The only other function of the decoder is to reset the
counter. The control instruction for this is 1 1 O i l
or AB CDE, which opens gates 67 and 68 to drive the
counter reset d.c. line up. It will be noted that the shift
pulses are taken from the NOT output of the flip-flops.
If this was not done the times of the positive edges would
not coincide due to component tolerances.

The decoder differs from the control unit in that it
does not take into account conditions that exist within the
computer. In other words it receives a certain input and
gives a fixed output that does not change. The control
unit, on the other hand, receives instructions from the
decoder and an additional order to start. The output it
gives will then depend on these inputs and conditions
within the computer.

It would be a good idea before starting to describe the
control unit to list all the things that are required of it:—

Add—Subtract and transfer instructions. Deliver eight
clock pulses to the decoder.

Multiply. Provide batches of eight clock pulses to the
decoder and one pulse for each addition to the counter.
When at the end of a word the contents of the counter
equal the contents of store 1, no further pulses to be
generated. If at the end of a word the carry store is set,
indicating that the capacity of the accumulator has been
exceeded, stop generating pulses regardless of the state
of the counter.

Divide. Generate batches of eight clock pulses and a
pulse to the counter for each subtraction minus one until
the carry store is set at the end of a word, indicating that
the accumulator has gone negative.

General. Provide a facility for operating the computer
at slow speed for demonstration purposes. Also, for the
same reason, provide a facility for carrying out operations
bit by bit instead of a complete operation at a time.
Provide an output for a sequential programming device
to indicate that an operation is complete and that the
computer is ready for a further instruction. Operation
of the control switches must not result in spurious pulses
being delivered to the computer.

The logical diagram that forms the basis of the control
unit is shown in Fig. 27. When the " start " press-
switch SIQ is depressed bistable 3 is set and the positive
edge available at its NOT output terminal in turn sets
bistable 4, driving one of the inputs to AND gate 69 " up."
The other input to gate 69 is provided by the clock-pulse
multivibrator, the circuit of which is shown in Fig. 28.
As a result AND gate 69 opens and closes in sympathy
with the multivibrator output, triggering flip-flop 2.
The output of flip-flop 2 is fed to the order decoder and
to a bit counter formed by three of the counter type
bistables. A counter connected in this fashion will
provide one output pulse for every eight input pulses, so
after eight pulses have been received by the bit counter
its output resets bistable 4, closing AND 69 and preventing
any further output pulses. From this it can be seen that
every time the " start " switch is pressed eight pulses are
delivered to the order decoder. If S9 is put into the
" one bit " position, flip flop 2 is now triggered by
bistable 3, so that one pulse will be fed to the decoder
for each press of the " start " switch.

The clock pulse multivibrator (Fig. 28) is a con-
ventional astable multivibrator, the speed of which can

WIRELESS WORLD, OCTOBER 196720

be decreased for slow-motion demonstrations by switch-
ing in two extra capacitors.

The complete logical diagram of the control unit is
shown in Fig. 29. Operation of the basic circuit is much
the same as previously described. It will be noticed that
after eight pulses have been produced, i.e. one word has
been dealt with, the " end-of-word-time-flip-flop"
(e.w.t.) is triggered by the negative-going edge available
at the NOT output of bistable 4 as it is reset. The output
of the e.w.t. flip-flop is fed to gate 70 and has no effect

WIRELESS WORLD, OCTOBER 1967 21

unless " multiply " or " divide " is selected. It will be
remembered that during multiplication the multiplier is
put into store 1. The computer then adds, each addition
being counted until the number of additions equals the
multiplier, this being detected by the comparator. When
the computer is instructed to multiply, AND gate 47 in
the order decoder opens to provide an " up " signal to
one of the inputs of gate 71 in the control unit. As the
counter is at zero at the start of the operation and as
store 1 holds the multiplier, the EQUAL output of the
comparator will be " up," opening gate 71, the output
of NOR 35 will be " down," and that of NOT 34 " up,"
providing one input for gate 70. The start switch is
pressed, and, as is normal, eight clock pulses are pro-
duced. At the end of the word the e.w.t. flip flop triggers
to open AND gate 70 which provides an " up " input to
the trigger stage (ignore the CARRY input to gate 70 at this
stage).

The trigger circuit is one that has not been mentioned
previously. Its output transistor collector is coupled to
the collector of Trl in bistable 4. Under normal con-
ditions Trl in the trigger stage is held in a conducting
state by Rt and its collector at 0V. As a result Tr2 is
turned off, having no effect on bistable 4. When the
e.w.t. flip-flop triggers AND gate 70 opens and the result-
ing negative-going edge tries to drive Trl in the trigger
stage further into conduction and has no effect. When C2
in the e.w.t. flip-flop discharges, the flip-flop returns to
its normal condition and closes AND gate 70. A positive-
going edge is now applied to the trigger stage, momen-
tarily turning off Trl. The collector potential of Trl
rises to — V, turning on Tr2 and " pulling " the collector
potential of Trl in bistable 4 to 0V, setting bistable 4,
to produce another eight clock pulses. Every time

programme store a particular instruction would be fed to
the order decoder, and a complete sequence of instruc-
tions would cause the computer to perform a required
arithmetical process. If such a device is to be added
the computer must be arranged to provide an output
pulse to advance the programme one position at the
end of each operation.

The additional logic required for such a system is
shown in Fig. 31. It provides two possible modes of
operation. First, at the end of an operation a pulse is
fed to the programming unit which selects the new
instruction, then the computer automatically re-starts
and goes through the complete programme until a "stop"
instruction is received. Second, the " end-of-operation "
pulse will advance the programme but will not restart
the computer. This means that the " start " switch has to
be pressed for each operation but the following instruc-
tion is pre-selected. This should be of value when
demonstrating the unit to a group of students.

Modifications required to the control unit consist of
disconnecting the " divide" control signal from NOR
35 and providing it with an AND gate of its own (75).
The CARRY input is disconnected from AND 70 and re-
connected to AND 75 and AND 71. The input components to
the trigger stage are duplicated and fed from some addition-
al logic. A moment's thought will show that now, when
multiplication or division is taking place the output of
NOR 35 will be " down " for the duration of the operation
and at the completion of the operation the output of
NOR 35 will be " up." So at the end of a word when
NOR 35 is " up " the programme unit must receive an
advance pulse.

At the end of every word the e.w.t. flip-flop triggers as
before. If the output of NOR 35 is " down " the com-
puter is restarted in the normal way. Each time the
e.w.t. flip-flop resets the end-of-operation (e.o.p.)
flip-flop triggers. If NOR 35 is " up," indicating the end
of an operation, and if bistable 4 is reset, as it will be at

the end-of-word time, AND 74 opens. This sets bistable 5,
providing a positive edge to advance the programme.
When the e.o.p. flip-flop resets, bistable 5 resets, provid-
ing a positive edge for the trigger stage and restarting
the computer. This procedure will continue until a
" stop " instruction from the programme unit drives the
input to NOR 37 " up," preventing AND 74 opening
and inhibiting any further restart and advance pulses.
The switch in the restart line from bistable 5 enables the
programme to be carried out automatically or step-by-
step for demonstration purposes. The input to AND
74 from bistable 4 prevents the programme from being
advanced in the middle of a word as would happen
under certain conditions.

This concludes the description of the functioning of
the computer. Readers who have been able to stay with
the series thus far can now start to order parts and reach
for their soldering irons with confidence.

(Next month: constructional hints.)

WIRELESS WORLD, OCTOBER 1967 23

WIRELESS WORLD DIGITAL
COMPUTER 4: Advice on construction and testing

IT is not proposed to give any practical component lay-
out diagrams for the computer, as all the circuit blocks
used are small and simple and the layout of them is

non-critical and a matter of personal preference. Readers
who think they would find it difficult to plan layouts for
the individual gates, bistables, etc., would be unwise to
attempt to construct the computer, because of its overall
complexity.

A word or two about the performance of the proto-
type. Because reject transistors were used throughout
about a dozen of these failed prematurely during the first
couple of weeks' service. After this " dead wood " had
been located and removed the computer proved to be
very reliable in operation. No proper temperature test-
ing facilities were available, but some rough checks were
made. For example, the computer was placed in a small

room with a large gas fire turned full on. When the
temperature in the room had risen to an uncomfortable
level the computer was subjected to a thorough testing,
which it passed with flying colours. When the machine
had returned to ambient temperature almost the entire
contents of a tin of an aerosol freezer were sprayed on all

24 WIRELESS WORLD, NOVEMBER 1967

components and mounting boards, coating them with a
thick layer of frost. This also had no effect on computer
performance. Finally, an old electric drill was obtained
that had a rather " sparky" commutator, and this was
rapidly switched on and off in close proximity to each
component mounting board—again without any detri-
mental effect on the operation of the computer.

Semiconductor testing.—The semiconductors used were
obtained from LST Components Ltd., 23 New Road,
Brentwood, Essex. The transistors used are a sub-
standard type 2G 371 and have been given the suffix
D1476 by Texas Instruments. However, only specimens
that have been selected for gain should be used. The
reader is advised to construct the simple test circuit
shown in Fig. 32 and test each transistor and diode be-
fore it is used. If a 1-mA meter is used as specified and
it is scaled 0-100, a direct reading of gain will be obtained
when the button is pressed. All transistors with a gain
of less than about 35 should be rejected. With the tran-
sistor in the test circuit and the button not pressed the
meter will read leakage current Ico. Any transistor with
q leakage current of more than about 100»A should be re-
jected. Diodes can be checked by placing them across

the diode test terminals. The meter should read about
full scale with the diode connected as shown and zero
with the diode reversed. Transistors used in the first stages
of AND gates are the most critical and should be selected for
low leakage and high gain.

Indicator lamps.—Two types of neon were tried in the
prototype and both gave satisfactory results. The first
of these was a small wire-ended type available from LST
Components. If these are used the series resistor should
be 1 Mii and the- supply & 150V. The second type,
used in the final design, are more expensive but lend a
more professional appearance to the completed computer.
They are the Bulgin Type D795 and should be used with
a 470-kll series resistor and a supply voltage of 125V.

Power supply unit.—This is the first unit that should
be built if a suitable bench supply is not already avail-
able. The overall power requirements of the computer
are:—125V at 80mA, -6V at 1 A, +4V at 30mA.

A circuit that will fulfil these requirements is shown in
Fig. 33. It is entirely conventional. The -6V line is
stabilized. The prototype unit was built on an Eddy-
stone aluminium diecast box, this forming an adequate
heat sink for the transistors.

Testing the computer.—Each section of the computer
should be tested as it is built before incorporating it in
the machine. For this reason it would be advantageous
to build about a dozen or so of the indication amplifiers
at an early stage in the construction to facilitate this test-
ing. Also, some of the units will require that special test
circuits be built to ensure correct operation. These cir-
cuits and individual tests of units will be discussed as
they arise. It is also recommended that the computer
units be interwired "bread-board" fashion and tested
before they are installed in a cabinet, as this will make for
easy fault location.

Numbers are fed into the computer by eight push but-
tons that set individual bistables in the register as shown
in Fig. 34. It was found convenient in the prototype to
provide separate reset buttons for various parts of the

25WIRELESS WORLD, NOVEMBER 1967

computer as this made the machine easier to operate.
These extra reset circuits are shown in Fig. 35, and the
actual push buttons are mounted at the bottom left of
the front panel. The reset facilities provided by the eight
control switches, however, are useful if it is ever decided
to add some form of sequential programming device.

The prototype was constructed on eight sheets of
17inX3|in Veroboard, leaving plenty of room to spare.
Readers may find advantage in using smaller boards.
The units were distributed amongst the boards as
follows: —

1. Register and control gating.
2. Accumulator and adder/subtracter.
3. Counter, Store 1 and comparator.
4. Store 2, Store 3 and control gating.
5. Counter transfer gating.
6. Decoder (minus shift-pulse flip-flops).
7. Control unit and shift-pulse flip-flops.
8. Indication amplifiers.
Some of these boards are shown in the accompanying

photographs. The method recommended for construc-
tion is to find out what is required on each board in the
way of different gates and bistables, etc., build these
as separate units on the board sharing common supply
lines, and then wire up the separate units by following
the logical diagram.

Adder /subtracter test circuit.—A suitable test circuit for
the adder/subtracter is shown in Fig. 36. The input
and control requirements are provided by double-pole

26 WIRELESS WORLD, NOVEMBER 1967

change-over switches and a multivibrator, the output
states being displayed by the standard indication circuit.
A single-pole switch determines whether clock pulses
from the multivibrator are fed to the adder/subtracter
or not. The outputs should conform to the addition and
subtraction tables given earlier. An example of a test
would be as follows:—

(1) Open clock-pulse switch.
(2) Set input switches to " add," A and B. (Input

to circuit ABc). Output indications should be
SUM, CARRY.

(3) Apply clock pulses. Outputs should now be SUM,
CARRY.

(4) Switch off clock pulses. Output should still be
as in (3) above.

(5) Set input switches to A, B. (Input to circuit now
ABc). Outputs from circuit should be SUM, CARRY.

(6) Apply clock pulses. Outputs should now be SUM,
CARRY.

In this example the procedure for testing the opera-
tion of two gates (1 and 9) and the carry store has been
given. Further similar checks should be carried out
until all the gates have been tested. These tests can
either be compiled by referring to the appropriate truth
tables or to the adder/subtracter logical diagram (Fig.
14, September issue). If a fault is apparent it is a fairly
easy task to locate which gate is responsible; then a
little judicious prodding with a meter should reveal the
cause without much difficulty.

Register test circuit.—When the adder/subtracter is
working correctly, the next task is to build two eight-
bit shift registers that will form the register and accu-
mulator. The same method is used for testing both of
these and is shown in Fig. 37. The 4.7-kii resistor on
the end of the flying lead will prove to be an invaluable
piece of test equipment. It enables individual bistables
to be set and reset without having to wire in push-but-
tons and switches that would complicate the wiring and
cause confusion at this stage.

To test a register, first press the reset button. All
indicator lights should go out. If any do not check the
indication circuit before examining the associated bi-

27WIRELESS WORLD, NOVEMBER 1967

stable. When all is in order, set each bistable in turn
using the 4-7-k'l "wand" and ensure that the corres-
ponding lamp lights. Wire a couple of 10-/*F,
15-V electrolytics across the multivibrator capaci-
tors to slow down the m.v.b., taking care to
connect them the right way round (negative end to
collector). Press the reset button and set one bistable
in the register. Close the clock pulse switch. Each
Bistable should set in turn and the light should travel
down the row of indicators with successive pulses from
the flip-flop. After the 2° bistable indicator is lit and
extinguished the 27 light should light. If all the lights
come on in turn and do not go out it is possible that the
input connections to one or more of the bistables have
been reversed. If the light gets to a certain bistable and
then disappears, suspect the components coupling the

two bistables or the commutating capacitors in the fol-
lowing bistable (C, and C,). If no shift occurs at all,
make sure that the multivibrator is working and is trig-
gering the flip-flop satisfactorily. If the flip-flop is not
triggering and is correctly wired, try increasing the value
of the flip-flop C,. Instead of just setting one bistable,
try setting several bistables and make sure the pattern
is preserved as they shift down the register. For those
who have never seen a shift register in operation before
the effect is quite fascinating.

When satisfactory operation has been achieved, remove
the 10//F capacitors from the multivibrator and ensure
that the register will operate' at the higher speed by
observing the output waveforms on the oscilloscope.
If faults occur do not forget to check the indicators and
the multivibrator.

Now that both the register and accumulator are work-
ing satisfactorily, connect them to the adder/subtracter
as shown in Fig. 18 (September) and also connect the
add/subtract control switch of Fig. 36. The outputs of
all bistables in the register and accumulator should be
provided with indicators, as should the SUM and CARRY
outputs of the adder/subtracter. It would be a good
idea to have also some sort of reset facility along the
lines of Fig. 35.

One cannot do much with this set-up as it stands
unless a means of providing eight shift pulses is available,
and for this reason the part of the control unit shown
in Fig. 27 (October issue) should be constructed. Do
not omit the normal one-bit switch. Connect an indicator
to the output of gate 69 in Fig. 27 and with the switch
in the "slow" position check that on pressing the
start switch the indicator flashes eight times. It is
difficult to predict all the faults that could occur in this
circuit and to advise the reader accordingly. Provided
a sensible approach is made and the operation of the
circuit is understood, no real trouble should be experi-
enced. If, for instance, the indicator does not flash at
all, check that the multivibrator is working. If this is
all right, set bistable 4 using the " wand ". If the light
still does not flash and bistable 4 is working the fault
must lie in gate 69. If it does flash check bistable 3 and
the coupling to bistable 4. If, on the other hand, when
the button is pressed the light flashes continuously,
check the bit counter by testing each bistable in turn
and also suspect bistable 4 and possibly AND gate 69.
The flip-flop can be checked by observing the output
on an oscilloscope with the circuit operating at normal
speed, the eight pulses being sufficient to make the
trace jump.

When all is well with the control unit, connect the
clock-pulse output to the shift-pulse input of the register,
accumulator, added/subtracter set-up. The output of
a flip-flop 2 should be found adequate to drive the two
registers. If it is not, however, build a flip-flop 3 and
connect it into the shift-pulse line. By setting numbers
into the register and accumlator with the " wand" one
can now add and subtract at will by pressing the start
button. The reader is advised to try several arithmetic
problems, carefully checking the results to ensure that
no obscure faults exist.

Counter, store and comparator testing.—The next items
to be constructed are the counter, store 1 and the com-
parator. When built, store 1 is tested in exactly the
same way as a register. The counter is connected to
a set of indicators and the operation of each bistable
is checked as was done for the registers. If all is well,
couple the input to the shift-pulse output of the control
unit. For each press of the button the counter should
count eight pulses. Try it at slow speed—the binary
count will be easily recognized. Connect the comparator
to the outputs and NOT outputs of the counter and
store 1. If any faults that did not exist before show
themselves the trouble could be in the input circut of
one of the comparator gates, or it could be that the

counter or store 1 were operating without any safety
margin, indicating a component well outside tolerance.
The comparator is checked by observing the EQUAL out-
put while varying the contents of the counter and store 1.
The EQUAL output should only be " up " when the con-
tents of store 1 and the counter are identical. Each
gate in turn should be checked by setting and resetting
the appropriate bistables with the " wand".

Checking arithmetic operations.—The rest of the circuits
should be added to the control unit so that it conforms
to Fig. 29 on page 21 and the various inter-unit connec-
tions made between the control unit, adder/subtracter,
accumulator, register, store 1, counter and comparator.
It will be necessary to connect two single-pole change-over
switches to the " multiply " and " divide " inputs of the
control unit as shown in Fig. 38. The control unit is
perhaps the most difficult for " trouble-shooting".
Should trouble be experienced a good knowledge of the
circuit, an oscilloscope and perseverance are the tools that
will ensure success.

We now have a circuit that will multiply and divide
as well as add and subtract. Reset all bistables, set
00001000 in store 1 and 00000001 in the register, select
" add " and " multiply " and press start button. Con-
tinuous additions should take place and the counter
should advance by 1 for each addition until it holds
00001000. The computer should then stop. The
accumulator should now hold 00001000 and the register
00000001. In other words we have multiplied 1 (2) by
1000, and the result, 1000,, is held in the accumulator.
If the counter counts the first addition but the computer
does not restart after the first word has been added
and it is proved with a meter (slow speed) or an
oscilloscope (normal speed) that the e.w.t. pulse is avail-
able at the AND gate 70 output, check the trigger stage
or try the effect of increasing the value of the input
trigger capacitor.

Provided all is well, with 00001000 in the accumulator
and 00000001 in the register, clear the counter to
00000000, select " substract" and "divide," and press
the start button. Repeated subtractions should take
place and at the end of the operation the counter should
hold 00001000, the register 00000001 and the accumula-
tor 11111111; and the carry store should be set indicat-
ing that the accumulator contents are negative. Switch
off the "divide" input to the control unit, reset the
carry store and select " add," and press the start button.
The accumulator should now hold 00000000 (the re-
mainder), the carry store should be set and the register
should still hold 00000001. What we have done is to
divide 00001000 by 1. This was performed by con-
tinuous subtraction until one too many subtractions took
place, resulting in the accumulator going negative. The
counter counted the subtractions and held the result
(quotient). We then cleared the redundant carry and
added, to compensate for the fact that one too many
subtractions took place, and the remainder, which was
0, was held in the accumulator.

Do not proceed any further with the construction until
all circuit arrangements described so far have been
thoroughly tested and are working satisfactorily.

The registers that form stores 2 and 3 may now be
built and tested, the data routing gates can be built and
the computer rewired to conform to the logical diagram
of Fig. 22 (September). This circuit should be tested
on its own with the aid of switches as shown in Fig. 39.
This means that quite a large amount of wiring has to
be done that will be of no use when the decoder is

28 WIRELESS WORLD, NOVEMBER 1967

added. However, the time so spent may well be repayed,
since, if faults are discovered when the decoder is added,
one will know immediately that these faults are con-
fined to the decoder.

Checking data routing.—Once the computer and the
test circuit are wired up all the tests that were pre-
viously carried out on the arithmetic unit should be
repeated. It is now necessary to take into account the
data routing control signals as well as the " multiply,"
" divide," " add " and " subtract" signals. To perform
the arithmetic checks, all gates with the exception of
13 and 15 should be closed and the shift-pulse switches
should be set to supply the register and accumulator.
The transfer gating should next be checked. For example,
close gates 13 and 15, open gates 14 and 18, set shift
pulse switches to store 3 and register, ensure that " multi-
ply " or " divide " is not selected, and press the " start"
switch. The contents of store 3 should transfer to the
register. Perform similar checks until all possible trans-
fer instructions have been tried, i.e. each store to the
register, each store to the accumulator, and the reverse,
register to each store, and accumulator to each store.
The gates that should be open can easily be deduced
from Fig. 22. If any faults occur first make sure that
the test control switches have been correctly set.

Decoder testing.—The decoder may now be built accord-
ing to the logical diagram of Fig. 26 (October). Testing
is quite simple. Couple up the power supplies to the
decoder and connect the clock-pulse input to a single-
pole changeover switch so that the clock pulse input
can be switched to either the negative or the OV line.
Check the operation of each gate in turn, referring to the
logical diagram, Fig. 26, and manipulating the input
switches accordingly. For example, put switch S8 " on,"
so that the input to the decoder is ABCDEFGH, then
operate the clock-pulse switch to connect the clock-pulse
input to the negative line. Conditions should be as
follows:—AND gates 46, 49, 63 and NOR gates 34, 31 all
" up," NOR 33 " down," all other AND gates down. Con-
nect the clock-pulse input to the OV line and check that
the output of AND gate 63 goes " down." While testing
the decoder check not only for the correct "up" out-
puts but make sure also that lines are "down" at the
right times.

Disconnect the test circuit of Fig. 39 from the com-
puter and fit the decoder in its place. Using the control
orders table on p. 18 of the October issue, check each
function of the computer in turn. Should a fault occur,
locate and cure it and repeat all previous tests until the
computer will perform all the operations in the table with
the exception of the transfer-from-counter instructions.

Only one further unit remains to be built, and this is
the counter transfer gating unit as in Fig. 23 (September).
By this time the reader will have gained sufficient ex-
perience to devise a means of testing this unit himself
as it only consists of a number of AND gates. When the
counter transfer gating unit has been built and tested
connect it to the computer as shown in Fig. 25 and once
again go completely through the repertoire of control
orders.

The computer may now be mounted in a cabinet.
The Imhof Type 1100A was used in the prototype and
found ideal for the purpose. The circuit boards were
mounted on an angle alloy framework in four banks
of two, care being taken to prevent short-circuits occur-
ing between this framework arid the copper strips of
the Veroboard. The front panel layout may be seen in
the photograph. If the specified push buttons are used
it should be noted that one side of these are common
to chassis. This common connection must be made the
negative line. As a result the case is connected to the
negative line and must not be connected to anything
else. 53 neons are mounted on the front panel. One neon
is used for each bistable in each register and the counter,
making 48 of the total. The other five neons are con-
nected as follows: —
(1) CARRY output of adder/substracter.
(2) SUM output of adder/subtracter.
(3) EQUAL output of comparator.
(4) AND 51 (decoder) output, indicating a "to store"

instruction.
(5) AND 52 (decoder) output, indicating a " from store "

instruction.
Neons (4) and (5) are interposed in two of the lines
drawn on the front panel forming a simplified flow dia-
gram of the computer, and they indicate when lit which
line is "open." The power unit was not mounted in the
cabinet.

29WIRELESS WORLD, NOVEMBER 1967

WIRELESS WORLD
DIGITAL COMPUTER
5. —Operation of the machine. Worked examples showing how
the instruction code is used in a variety of arithmetical problems

THROUGHOUT the construction and testing of the
computer the reader will have become very
familiar with its circuits and the method of

operation; therefore little need bf said about the basic
arithmetic operations, with perhaps the exception
of division. Several numerical examples will be given to
illustrate how the computer may be used to carry out
more complex tasks. The reader is advised to perform
these on the completed machine as they are explained,
and the reasons for the various operations will then
become obvious. All control instructions will be written
in their octal form.

Consider 85(10) H- 15(10), which is 01010101 < 2 > -f-
00001111(2). Referring to the control orders table
(Oct. issue, p. 489), the first instruction is 022(s). The
counter now holds 00000101 (2 > = 5(10> and the accumu-
lator holds 11111011(2) =•- —5(i 0) as one too many sub-
tractions have taken place and the carry store is set.
The next instruction is 040(8). This resets the carry store.
The third instruction is " add " (to compensate for the
one too many subtractions), that is, 001 (8 > . The accumu-
lator now holds 00001010(2) = 10(10), which is the
remainder, and once again the carry store is set, necessi-
tating another 040(8) instruction. From this it can be seen
that the sequence of instructions, or programme, required
for the division is 022, 040, 001, 040. The result (quotient)
is then held in the counter and the remainder in the
accumulator.

In the binary arithmetic " reminder " section (August
issue) there was a reference to the natural binary coded
decimal (n.b.c.d.) system, in which each decimal digit
is represented by its binary equivalent, four binary digits
being used for each decimal place. It is an easy matter to
carry out conversion from pure binary to n.b.c.d. by
first dividing by 100(10) and then 10(10). The programme
for doing this is as follows:

Only four bits are required for n.b.c.d. representation ;
therefore 10111111,2) =- 191(10) = 0001 1001 0001
(n.b.c.d.).

The computer can be used to carry out the reverse
operation, n.b.c.d. to pure binary. This is done by
multiplying by 100(10) and 10(10) and adding as follows:—

Convert 0001 1001 0001 to natural binary
———— Write 01100100 in R (100(10)).
Ill Transfer R to St.l. (St.l holds multiplier).
———— Write 00000001 in R (n.b.c.d. hundreds).
Oil Multiply.
330 Clear counter.
122 Transfer A to St.2. (storing result until re-

quired).
110 Clear R.
———— Write 00001010 in R (10(10)).
111 Transfer R to St.l (St.l. holds multiplier;.
———— Write 00001001 in R (n.b.c.d. tens).
Oil Multiply.
212 Transfer St.2 to R. (R now holds result of first

operation).
001 Add (A now holds combined results of first and

second operation).
110 Clear R.
———— Write 00000001 in R (n.b.c.d. units).
001 Add. (A now holds result, 1011 111 1(2)).

Finish off the programme by tidying up the
computer:—
110 Reset R.
330 Reset Cntr.
101 Reset St. 1.

We have converted 10111111 to its n.b.c.d. form and
back again. Now what about operations in pounds,
shillings and pence?

POUNDS, SHILLINGS AND PENCE

Let us add £4 11s 6d, £39 7s 8d and £17 14s 3d.
The method to be adopted here is to deal with the pence

30 WIRELESS WORLD, DECEMBER 1967

first, then the shillings and then the pounds, as is standard
practice. For the sake of clarity, in this example, the
quantities will be retained in their decimal form, but the
constructor will, of course, convert them to binary
for feeding into the computer.

Total pounds are now held in St.3, shillings in St.2
and pence in St.l. The reader is invited to work out his
own programmes for monetary subtraction, division and
multiplication. In the addition just described the number

31WIRELESS WORLD, DECEMBER 1967

of quantities to be added need not be restricted to three
so long as the capacity of the accumulator is not exceeded.

ONES AND TWOS COMPLEMENTS

To perform subtraction by the Is complement method
proceed as follows:

Using Is complement subtract 00101011 from
10010011.
———— Write 00101011 in R.
001 Add (placing 00101011 in A).
045 Complement A. (No need to clear R before

this operation).
110 Clear R.
———— Write 10010011 in R.
001 Add. (Carry store is now set holding the end-

around-carry).
110 Clear R.
001 Add (adding in the end-around-carry; result

now held in A).
The 2s complement method may be demonstrated in a

similar fashion. Using the same figures as before the
programme runs as follows.
———— Write 00101011 in R.
001 Add.
045 Complement A. (A now holds Is complement).
110 Clear R.
004 Write 1 in R.
001 Add. (A now holds 2's complement).
110 Clear R.
———— Write 10010011 in R.
001 Add. (Result now held in A).

The carry store will now be set holding an end-around-
carry that is not required. Reset it (040) before carrying
out any further operations.

Now try the following. Write 00000101 in R; add (001);
clear R (110)', write 00001010 in R; subtract (002).
Clear R (110); subtract (002) to perform end-around-
carry. Now let us see what we have done and analyse
the results. We put 5<10) in A and the subtracted 10(10j
so the accumulator should hold — 5(10), but it in fact
holds 11111010, which is 250(10). But how can we tell if
11111010 is -5(10) or 250(10)? Now with 11111010 still
in the accumulator, complement it (0451; this leaves us
with 00000101, which is 5(10), showing that the comple-
ment of a negative number is, in fact, its positive counter-
part, and vice versa.

Now it would be interesting to write the binary equiva-
lents of all the numbers from +5 to —5 in Is complement
form:

+ 5 00000101
+4 00000100
+3 00000011
+2 00000010
+ 1 00000001

0 00000000
0 11111111

-1 11111110
-2 11111101
-3 11111100
-4 11111011
-5 11111010

TWJ facts are immediately apparent on examining
this table. First, all the positive numbers start with 0 and
all the negative numbers with 1; secondly, zero is repre-
sented in two ways. The first fact provides a means of
telling whether a number is positive or negative. Because
of this the left-hand digit is known as the sign digit, 0
indicating a positive number and 1 a negative number.
Using this form of representation, the computer, instead of

FRACTIONS AND DECIMAL POINTS

So far we have only concerned ourselves with whole
numt er;, but our eight bits could represent 11111111 or
11111 l t .1 or 0.11111111. Bits to the right of the binary
place nave weights of decreasing powers of two:—

2-1 2-2 2-32~4 2-5 2~62-7 2-8

0 . 1 1 1 1 1 1 1 1
The following conversion table is provided for the
reader's convenience.
2° - 1 =1.0 = 1.00000000(2)
2-i = 1/2 = 0.5 = 0.10000000(2)
2-2 = 1/4 = 0.25 = 0.01000000(2)
2-s = 1/8 = 0.125 = 0.00100000(2)
2-" = 1/16 = 0.0625 = 0.00010000(2)
2-5 = 1/32 = 0.03125 = 0.00001000(2)
2-« = 1/64 = 0.015625 = 0.00000100(2)
2-7 = 1/128 = 0.0078125 - 0.00000010,2)
2-8 - 1/256 = 0.00390625 - 0.00000001(2)

The binary point can be placed anywhere in our eight-
bit word, provided it is in the same position in all numbers
used in a particular operation.

constructed the machine have been able to obtain
some useful information from the series. It is
also hoped that those readers who have built the compu-
ter have surmounted any difficulties that may have arisen
and are now basking in the sense of achievement that
results from constructing a unit of this complexity.

COMBINED COUNTER/REGISTER CIRCUIT

It has been suggested by a reader, D. A. Ellis, that
if a combined counter/shift register could be developed
then it would be possible to effect serial transfers from the
counter, rendering the counter transfer gating unit
redundant. Such a unit is described here. It should
be no'icd, however, that a number of modifications would
be necessary to the basic computer decoder, these are
not described. Those readers that have understood the
operation of the computer should be able to incorporate
this circuit without too much difficulty—if they so desire.

The basic bistable of Fig. 11 (a) (August issue page
371) is modified as per Fig. 1, a pair of set and reset
(a.c.) outputs being provided. If these bistables are
connected as in Fig. 2 and the COUNT inputs are down
then the bistable chain will count any pulses fed to the
input p(l). If the COUNT inputs are up the chain will
ignore any pulses present at p(l).

Now if the bistables are connected as shown in Fig. 3
and the COUNT inputs are up and shift pulses are applied
to the p(2) inputs a shift register results. Also if the
COUNT inputs are down the chain behaves as a counter,
counting pulses applied to p(l).

34 WIRELESS WORLD, DECEMBER 1967

